U cHAN nIGAB H Department of Computer Science

CHANDIGARH
IVERSITY

University Institute of Engineering

DEPARTMENT OF COMPUTER SCIENCE
& ENGINEERING

Bachelor of Engineering

Subject Name: System Programming
Subject Code: CST-315

Compilers | DISCOVER . LEARN . EMPOWER

Department of computer Science

=]

)

e Chapter-1.2
Assembler

UNIVERSITY

e Multi-Pass Assemblers

* Advanced Assembly Process

—

Forward Reference

0 All symbol-defining directives do not allow
forward reference for 2-pass assembler

e.g., EQU, ORG...

All symbols used on the right-hand side of the
statement must have been defined previously

E.Q. Cam}b@bpﬁ assengaﬂd In 2- pang?Rsm

BETA EQU DELTA
DELTA RESW 1

88

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

e
2.4 Assembler Design Options

O One-pass assemblers

O Multi-pass assemblers

129

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

e
2.4.1 One-Pass Assemblers

O Goal: avoid a second pass over the source program

O Main problem

m Forward references to data items or labels on instructions

O Solution

» Data items: require all such areas be defined before they are
referenced
= Label on instructions: cannot be eliminated

o E.g. the logic of the program often requires a forward jump

o Itis too inconvenient if forward jumps are not permitted

130

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Two Types of One-Pass Assemblers:

0 Load-and-go assembler

» Produces object code directly in memory for
immediate execution

O The other assembler

» Produces usual kind of object code for later
execution

131

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

—
[.oad-and-Go Assembler

O No object program 1s written out, no loader 1s
needed
O Useful for program development and testing

Avoids the overhead of writing the object program out and
reading 1t back in

O Both one-pass and two-pass assemblers can be
designed as load-and-go

However, one-pass also avoids the overhead of an
additional pass over the source program

O For a load-and-go assembler, the actual address must be
known at assembly time.

132

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

—!

Forward Reference Handling in One-pass

Assembler

O When the assembler encounter an instruction operand
that has not yet been defined:
The assembler omits the translation of operand address
Insert the symbol into SYMTAB, if not yet exist, and mark this
symbol undefined

The address that refers to the undefined symbol is added to a list of
forward references associated with the symbol table entry
When the definition for a symbol 1s encountered

1. The forward reference list for that symbol is scanned

2. The proper address for the symbol is inserted into any instructions previous
generated.

133

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

—!
Handling Forward Reference in One-pass

Assembler (Cont.)

O At the end of the program

Any SYMTAB entries that are still marked with *
indicate undefined symbols

O Be flagged by the assembler as errors

Search SYMTARB for the symbol named in the END

statement and jump to this location to begin execution of
the assembled program.

134

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Sample Program for a One-Pass Assembler

(Fig. 2.18)

Line

VOUPBWNREO

11N

Loc

1000
1000
1003
1006
1009
100C
100F

200F
2012
2015
2018
201B
201E
2021
2024
2027
202a
202D
2030
2033
2036

Source statement

COPY
EOF
THREE
ZERO
RETADR
LENGTH
BUFFER

FITRST
CIL.OOP

ENDFEF I

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

START

BYTE
WORID
WORD
RESW
RESW
RESE

STL,
JSUB
DA
COMP
JEQ
JSUB
T
LA
STA
I.DA
STA
JSURB
10T,
RSUB

1000
C " EOF”

RETADR
RDREC
LENGTH
ZERO
ENDFEFTTI,
WRREC
CLOCP
EOF
BUFFER
THREE
LENGTH
WRREC
RETADR

Object cade

454F 46
000003
000000

14100%
48203D
CO1L0O0C
281006
302024
482062
302012
0010C0C0
OC100F
001003
OC100C
482062
081009
4C00Q00O

http://www.pdffactory.com/

Sample Program for a One-Pass Assembler
(Fig. 2.18) (Cont.)

115
120
121
122
124
125
130
135
140
145
150
155
160
165
170
175
180
195

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

203%
203A

203D
2040
2043
2046
2049
204cC
204F
2052
2055
2058
205B
205E

-

INPUT
MAXT.EN
RDREC

RL.OOP

EXTIT

SUBROUTINE TO READ RECORD INTO BUFFET

BYTE
WORD

X'F1l*
4096

ZERO
ZERO
INPUT
RTL.OOP
INPUT
ZERO
EXTIT

BUFFER, X

MAXTEN
RT.O0P
LENGTH

Fl
001000

041006
001G06
EC2039
302043
D82039
281006
30205B
549C0F
2C203A
382043
10100C
4C0000

http://www.pdffactory.com/

Sample Program for a One-Pass Assembler
(Fig. 2.18) (Cont.)

13D .

200 . SUBROUTINE TC WRITE RECORD FROM BUFFER
205 ‘

206 2061 OUTPUT BYTE X'05” 05

207 ;

210 2062 WRREC DX ZERO 041006
215 2065 WLOOP D OUTPUT EO02061
220 2068 JEQ WLOOP 302065
225 206B LDCH BUFFER, X 50900F
230 206E WD OUTFUT DC2061
235 2071 TIX LENGTH 2C¢100cC
240 2074 JLT WLOOP 382065
245 2077 RSUB 4C0000
255 END FIRST

Figure 2.18 Sample program for a one-pass assembler.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

—

Example
0 Fig. 2.19 (a)

Show the object code in memory and symbol table
entries after scanning line 40

Line 15: forward reference (RDREC)

O Object code 1s marked ----

O Value in symbol table 1s marked as * (undefined)

O Insert the address of operand (2013) 1n a list
associated with RDREC

Line 30 and Line 35: follow the same procedure s

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Object Code in Memory and SYMTAB

After scanning line 40

Memory

address

1000
1010

2000
2010
2020

Symbol Value

Con ts
454F4600 00032000 OOXXXXXX XXXXXXXX
KXXXXXXX XXAXXXXX XXXXXXXX XXXXXXXX
XXXXXXX XXXXXXX XXXXXXXX XxXxxxxxl

0100C 28100630

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

2

LENGTH |100C

RDREC | 2013

THREE |1003

ZERO 9081 ——.

WRREC 201F

EOF 1000

ENDFIL -— 201C
[RETADR t00———

BUFFER |100F

CLOOP [2012

FIRST 200F

http://www.pdffactory.com/

.
Example (Cont.)

0 Fig. 2.19 (b)

» Show the object code in memory and symbol table entries after
scanning line 160

m Line 45: ENDFIL was defined

O Assembler place its value in the SYMTAB entry

O Insert this value into the address (at 201C) as directed by the forward
reference list

= Line 125;: RDREC was defined

o Follow the same procedure

» Line 65 and 155
o Two new forward reference (WRREC and EXIT)

140

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Object Code in Memory and SYMTARB

After scanning line 160

2031

Memory Symbol Value
address Contents LENGTH | 100C
1000 454F4600 0003000 OXXXXXX XXXXXXXX RDREC 203D |
1010 KXXXXXXX XXXX XX XXXXXXXX XXXXXXXX
o THREE 1003
L J
- ZERO 1006
2000 XXXXXX XXXXXX XXXXXXXX
2010 1009401000 28100630 WRAEG |2 [y 2008
2020 0010000C 100F0010 EOF 1000
2030)8 10094C00 OOF1l0010
2040 20393020 43D82039 ENDFIL | 2024
2050
© _Jms—
5 BUFFER | 100F
CLOOP 2012
ﬁ‘:' | 200F
MAXLEN 203A:
INPUT 2039
EXIT LB 2050
RLOOP 2043

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Object Code in Memory and SYMTAB Entries
for Fig 2.18 (Fi1g. 2.19b)

Memory
address Contentsa
1000 454F 4500 00030000 O0OXXXXRX AX KK KXXX
1010 HKHEXHXXREKKX XXEXKRKIEK XX KX M AKX EXKKX
-
-
2000 XRKRKRKIKIENXX HEXXKEKXXX HXEXRXKXHXXA I XXX L4
2010 1004820 3p00100C 28100630 8—
2020 —-3C2012 0010000C 100F0OO010 D30C100C
2030 48—————08 10094Ca0 OQF1l0010 Q0041006
2040 O0100SED 20393020 43D82039 28100630
2050 ————5490 OF

Symbol Value

LENGTH I00C

RDREC 203D

THREE 31003

ZERO 1006

WRREC # | - 201F .-'
EO¥F 1000 -
ENDFIL 2024

RETADR 1009

BUFFER 100F

CLOOP 2012

FIRST 200F

MAXLEN | 203A

INPUT 2039

v [+[—{zas0]0]

RLOOP 2043

Figure 2.19(b) Object code in memory and symbol table entries for
the program in Fig. 2.18 after scanning limne 160.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

One-Pass Assembler Producing Object Code

0 Forward reference are entered into the symbol table’s list as
before
If the operand contains an undefined symbol, use 0 as the address
and write the Text record to the object program.
O However, when definition of a symbol 1s encountered,

the assembler must generate another Iext record with the
correct operand address.

O When the program 1s loaded, this address will be
inserted into the instruction by loader.

O The object program records must be kept 1n their original
order when they are presented to the loader

143

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

—

Example
0 In Fig. 2.20

Second Text record contains the object code
generated from lines 10 through 40

0 The operand addressed for the instruction on line 15, 30, 35
have been generated as 0000

When the definition of ENDFIL is encountered

O Generate the third Text record

Specify the value 2024 (the address of ENDFIL) 1s to be loaded at
location 201C (the operand field of JEQ in line 30)

Thus, the value 2024 will replace the 0000 previously loaded

144

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Object Program from one-pass assembler for
Fig 2.18 (F1g 2.20)

HCOPY 001000001074 201C
TOO100009454F&6000003000000 \
a roozoo§3§3a100948000000100c281oo§gooooanaooooaczo1z

5. T00201C022024

39020241900100990100?0010030c1oo%%sdob 081009acoooorloo1ooo

v-!
O
[
[]
o
W
F
C:v
N
(w}
fs)
N

T002062 18041 006E0206 130206550900FD02061 2C1 00('1'\382065400 000
EAOO2OOF

Figure 2.20 Object program from one-pass assembler for program
in Fig. 2.18.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

e
2.4.2 Multi-Pass Assemblers

O Motivation: for a 2-pass assembler, any symbol used
on the right-hand side should be defined previously.

= No forward references since symbols’ value can’'t be
defined during the first pass

o Eg :APLHA EQU BETA |
. BETA EQU DELTA | Notallowed!

146

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

—
Multi-Pass Assemblers (Cont.)

O Multi-pass assemblers
Eliminate the restriction on EQU and ORG

Make as many passes as are needed to process the
definitions of symbols.

O Implementation

To facilitate symbol evaluation, in SYMTAB, each entry must
indicates which symbols are dependent on the values of it

Each entry keeps a linking list to keep track of whose
symbols’ value depend on an this entry

147

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Example of Multi-pass Assembler Operation
(fig 2.21a)

148

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Example of Multi-Pass Assembler Operation
(Fig 2.21b)

& I: one system in the defining expression is undefined

A list of the symbols whose
values depend on MAXLEN

(b}

Figure 2.21 Example of muiti-pass assembler operation.

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

S —
Example of Multi-Pass Assembler Operation

(Fig 2.21¢)

HALFSZ {&1| MAXLEN/2 @

MAXLEN —1 HALFSZ | @

S

©)

150

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Example of Multi-pass Assembler Operation
(fig 2.21d)

BUFEND | * - MAXLEN | ©
HALFSZ |81 MAXLEN/2 0
MAXLEN |&2| BUFEND-BUFFER s> HALFSZ {0

(@)

Figure 2.21 (contd)

151

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Example 0! Mulfl-pass xssemgler

Operation (fig 2.21¢)

BUFEND | * - P MAXLEN | @

HALFSZ EQU MAXLEN/2 BUFEND-
MAXLEN EQU BUFFER BUFFER-1 HALFSZ |&1| MAXLEN/Z 0
PREVBT EQU

PREVBT

BUFFERRESB ________ 4096 MAXLEN ‘UFEND—BUFFER o—t—p HALFSZ | @
BUFEND EQU H
BUFFER o
Suppose Buffer =* = (PC)=1034 4
{e)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Example of Multi-pass Assembler Operation

(Fig 2.211)

BUFEND=*PC)=1034.5+4096,,=1034;5+1000;,=2034 14

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

HALFSZ @

PREVEBT

1033

MAXLEN a

BUFFER

1034

Figure 2.21 (cond)

i

s3 [

http://www.pdffactory.com/

2.5 Implementation Examples
O Microsoft MASM Assembler

O Sun Sparc Assembler

O IBM AIX Assembler

154

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

e
2.5.1 Microsoft MASM Assembler

O Microsoft MASM assembler for Pentium and other
X386 systems

O Programmer of an x86 system views memory as a
collection of segments

155

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

Multi-Pass Assemblers

If we use a two-pass assembler, the following symbol definition cannot
be allowed.

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

This is because ALPHA and BETA cannot be defined in pass 1. Actually,
if we allow multi-pass processing, DELTA is defined in pass 1, BETA is
defined in pass 2, and ALPHA is defined in pass 3, and the above

definitions can be allowed.
This is the motivation for using a multi-pass assembler.

f:. Multi-Pass Assemblers

CHANDIGARH
UNIVERSITY

* |t is unnecessary for a multi-pass assembler to make more than two passes
over the entire program.

* Instead, only the parts of the program involving forward references need to
be processed in multiple passes.

* The method presented here can be used to process any kind of forward
references.

* Use a symbol table to store symbols that are not totally defined yet.

* For a undefined symbol, in its entry, — We store the names and the number
of undefined symbols which contribute to the calculation of its value. — We
also keep a list of symbols whose values depend on the defined value of
this symbol.

* When a symbol becomes defined, we use its value to reevaluate the values
of all of the symbols that are kept in this list.

 The above step is performed recursively.

Multi-Pass Assemblers

* Examples
Microsoft MASM Assembler, Sun Sparc Assembler, IBM AIX Assembler
* Microsoft MASM Assembler

e SEGMENT - a collection segments, each segment is defined as
belonging to a particular class, CODE, DATA, CONST, STACK

e registers: CS (code), SS (stack), DS (data), ES, FS, GS
* similar to program blocks in SIC | ASSUME

e. g. MOVE ES: DATASEG 2 AX, DATASEG 2 ES, AX » similar to BASE in SIC
11

£

i

(H | .
s Multi-Pass Assemblers

* |Microsoft MASM Assembler (Contd.)

JUMP with forward reference

* near jump: 2 or 3 bytes

far jump: 5 bytes

e. g. JMP TARGET

* Warning: JIMP FAR PTR TARGET

 Warning: JMP SHORT TARGET

e Pass 1: reserves 3 bytes for jump instruction phase error PUBLIC, EXTRN
 similar to EXTDEF, EXTREF in SIC 12

)

)

H)
= Advanced Assembly process

Assembly language program

Object: Machine language module| [Object: Library routine (machine language

,\—-—a-./

Linker

Executable: Machine language program

o

Loader

N o \

Memory

\.
\"-;

Advanced Assembly Process (Example)

Mnemonic (_)pc~|‘.'a|‘|d~ Comment

MOV AX,BX ; Put byte count into AX

The assembler reads a line like this one from the source code file
and writes the equivalent machine instruction to the object code file:

'8BH 0C3H

36

<

i

H)
&2l Advanced Assembly Process

* Assembling

e At assembly time, the assembler:
* Evaluates conditional-assembly directives, assembling if the conditions are true.
* Expands macros and macro functions.

* Evaluates constant expressions such as MYFLAG AND 80H, substituting the
calculated value for the expression.

* Encodes instructions and non address operands. For example, mov cx, 13; can be
encoded at assembly time because the instruction does not access memory.

e Saves memory offsets as offsets from their segments.

* Places segments and segment attributes in the object file.

« Saves placeholders for offsets and segments (relocatable addresses).

e QOutputs a listing if requested.

* Passes messages (such as INCLUDELIB) directly to the linker.

)

H)
&=l Advanced Assembly Process

Once your source code is assembled, the
resulting object file 1s passed to the linker. At

this point, the linker may combine several Object files
object files into an executable program. The
linker:

- Combines segments according to the
instructions in the object files,
rearranging the positions of segments that
share the same class or group.

o Fills in placeholders for offsets
(relocatable addresses).

o Writes relocations for segments into the
header of .EXE files (but not .COM files).

Final object file or
executable file

o Writes the result as an executable
program file.

i

H)
&2l Advanced Assembly Process

* Loading

After loading the executable file into memory, the operating system:
* Creates the program segment prefix (PSP) header in memory.
* Allocates memory for the program, based on the values in the PSP.
* Loads the program.
* Calculates the correct values for absolute addresses from the relocation table.

* Loads the segment registers SS, CS, DS, and ES with values that point to the
proper areas of memory.

Advanced Assembly Process

Useful Tools and Utilities

* DUMPBIN disassembly program
* Debuggers: OllyDbg and WinDbg
* Consol I/0O: iolib.

Department of computer Science

References

e [PDF] Systems Programming and Operating Systems by Dhamdhere -
Free Download PDF (dlscrib.com)

e [PDF] Principles of Compiler Design By Alfred V. Aho & J.D.Ullman
Free Download — Learnengineering.in

41

N

https://dlscrib.com/download/systems-programming-and-operating-systems-by-dhamdhere_59b64cb7dc0d60182f8ceb1f_pdf
https://learnengineering.in/pdf-principles-of-compiler-design-by-alfred-v-aho-j-d-ullman-free-download/

THANK YOU

