
DISCOVER . LEARN . EMPOWER

University Institute of Engineering
DEPARTMENT OF COMPUTER SCIENCE

& ENGINEERING
Bachelor of Engineering

Subject Name: System Programming
Subject Code: CST-315

Department of Computer Science

1
Compilers

Chapter-1.2
Assembler

• Multi-Pass Assemblers

• Advanced Assembly Process

Department of computer Science

2

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

88

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Forward Reference
o All symbol-defining directives do not allow

forward reference for 2-pass assembler
n e.g., EQU, ORG…
n All symbols used on the right-hand side of the

statement must have been defined previously
E.g. (Cannot be assembled in 2-pass assm.)

http://www.pdffactory.com/

129

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

2.4 Assembler Design Options
o One-pass assemblers

o Multi-pass assemblers

http://www.pdffactory.com/

130

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

2.4.1 One-Pass Assemblers
o Goal: avoid a second pass over the source program
o Main problem

n Forward references to data items or labels on instructions

o Solution
n Data items: require all such areas be defined before they are

referenced
n Label on instructions: cannot be eliminated

o E.g. the logic of the program often requires a forward jump
o It is too inconvenient if forward jumps are not permitted

http://www.pdffactory.com/

131

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Two Types of One-Pass Assemblers:
o Load-and-go assembler

n Produces object code directly in memory for
immediate execution

o The other assembler
n Produces usual kind of object code for later

execution

http://www.pdffactory.com/

132

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Load-and-Go Assembler
o No object program is written out, no loader is

needed
o Useful for program development and testing

n Avoids the overhead of writing the object program out and
reading it back in

o Both one-pass and two-pass assemblers can be
designed as load-and-go
n However, one-pass also avoids the overhead of an

additional pass over the source program
o For a load-and-go assembler, the actual address must be

known at assembly time.

http://www.pdffactory.com/

133

Forward Reference Handling in One-pass
Assembler

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

o When the assembler encounter an instruction operand
that has not yet been defined:
1. The assembler omits the translation of operand address
2. Insert the symbol into SYMTAB, if not yet exist, and mark this

symbol undefined
3. The address that refers to the undefined symbol is added to a list of

forward references associated with the symbol table entry
4. When the definition for a symbol is encountered

1. The forward reference list for that symbol is scanned
2. The proper address for the symbol is inserted into any instructions previous

generated.

http://www.pdffactory.com/

134

Handling Forward Reference in One-pass
Assembler (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

o At the end of the program
n Any SYMTAB entries that are still marked with *

indicate undefined symbols
o Be flagged by the assembler as errors

n Search SYMTAB for the symbol named in the END
statement and jump to this location to begin execution of
the assembled program.

http://www.pdffactory.com/

135

Sample Program for a One-Pass Assembler
(Fig. 2.18)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

136

Sample Program for a One-Pass Assembler
(Fig. 2.18) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

137

Sample Program for a One-Pass Assembler
(Fig. 2.18) (Cont.)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

138

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Example
o Fig. 2.19 (a)

n Show the object code in memory and symbol table
entries after scanning line 40

n Line 15: forward reference (RDREC)
o Object code is marked ----
o Value in symbol table is marked as * (undefined)
o Insert the address of operand (2013) in a list

associated with RDREC
n Line 30 and Line 35: follow the same procedure

http://www.pdffactory.com/

139

After scanning line 40

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Object Code in Memory and SYMTAB

http://www.pdffactory.com/

140

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Example (Cont.)
o Fig. 2.19 (b)

n Show the object code in memory and symbol table entries after
scanning line 160

n Line 45: ENDFIL was defined
o Assembler place its value in the SYMTAB entry
o Insert this value into the address (at 201C) as directed by the forward

reference list
n Line 125: RDREC was defined

o Follow the same procedure
n Line 65 and 155

o Two new forward reference (WRREC and EXIT)

http://www.pdffactory.com/

141

Object Code in Memory and SYMTAB
After scanning line 160

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

142

Object Code in Memory and SYMTAB Entries
for Fig 2.18 (Fig. 2.19b)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

143

One-Pass Assembler Producing Object Code

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

o Forward reference are entered into the symbol table’s list as
before
n If the operand contains an undefined symbol, use 0 as the address

and write the Text record to the object program.
o However, when definition of a symbol is encountered,

the assembler must generate another Text record with the
correct operand address.

o When the program is loaded, this address will be
inserted into the instruction by loader.

o The object program records must be kept in their original
order when they are presented to the loader

http://www.pdffactory.com/

144

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Example
o In Fig. 2.20

n Second Text record contains the object code
generated from lines 10 through 40
o The operand addressed for the instruction on line 15, 30, 35

have been generated as 0000
n When the definition of ENDFIL is encountered

o Generate the third Text record
n Specify the value 2024 (the address of ENDFIL) is to be loaded at

location 201C (the operand field of JEQ in line 30)
n Thus, the value 2024 will replace the 0000 previously loaded

http://www.pdffactory.com/

145

Object Program from one-pass assembler for
Fig 2.18 (Fig 2.20)

201C

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

146

2.4.2 Multi-Pass Assemblers
o Motivation: for a 2-pass assembler, any symbol used

on the right-hand side should be defined previously.
n No forward references since symbols’ value can’t be

defined during the first pass

o E.g. EQU BETA
EQU DELTA

APLHA
BETA
DELTA RESW 1

Not allowed !

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

o Multi-pass assemblers
n Eliminate the restriction on EQU and ORG
n Make as many passes as are needed to process the

definitions of symbols.

o Implementation
n To facilitate symbol evaluation, in SYMTAB, each entry must

indicates which symbols are dependent on the values of it
n Each entry keeps a linking list to keep track of whose

symbols’ value depend on an this entry
147

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

Multi-Pass Assemblers (Cont.)

http://www.pdffactory.com/

148

Example of Multi-pass Assembler Operation
(fig 2.21a)

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

HALFSZ
MAXLEN
PREVBT

EQU
EQU
EQU

MAXLEN/2 BUFEND-
BUFFER BUFFER-1

.

.

.
BUFFER RESB 4096
BUFEND EQU *

http://www.pdffactory.com/

149

Example of Multi-Pass Assembler Operation
(Fig 2.21b)

HALFSZ
MAXLEN
PREVBT

EQU
EQU
EQU

MAXLEN/2 BUFEND-
BUFFER BUFFER-1

.

.

.
BUFFER RESB 4096

BUFEND EQU *

&1: one system in the defining expression is undefined

*: undefined

A list of the symbols whose
values depend on MAXLEN

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

150

Example of Multi-Pass Assembler Operation
(Fig 2.21c)

HALFSZ
MAXLEN
PREVBT

.

EQU
EQU
EQU

MAXLEN/2 BUFEND-
BUFFER BUFFER-1

.

.
BUFFER RESB 4096
BUFEND EQU *

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

151

Example of Multi-pass Assembler Operation
(fig 2.21d)

HALFSZ
MAXLEN
PREVBT

EQU
EQU
EQU

MAXLEN/2 BUFEND-
BUFFER BUFFER-1

.

.

.
BUFFER RESB 4096

BUFEND EQU *

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

152

Example of Multi-pass Assembler
Operation (fig 2.21e)

HALFSZ
MAXLEN
PREVBT

EQU
EQU
EQU

MAXLEN/2 BUFEND-
BUFFER BUFFER-1

.

.

.
BUFFER RESB 4096

BUFEND EQU *

Suppose Buffer =* = (PC)=103416

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

531

Example of Multi-pass Assembler Operation
(Fig 2.21f)

HALFSZ
MAXLEN
PREVBT

EQU
EQU
EQU

MAXLEN/2 BUFEND-
BUFFER BUFFER-1

.

.

.
BUFFER RESB 4096

BUFEND EQU *

BUFEND=*(PC)=103416+409610=103416+100016=203416

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com/

154

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

2.5 Implementation Examples
o Microsoft MASM Assembler

o Sun Sparc Assembler

o IBM AIX Assembler

http://www.pdffactory.com/

155

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

2.5.1 Microsoft MASM Assembler
o Microsoft MASM assembler for Pentium and other

x86 systems

o Programmer of an x86 system views memory as a
collection of segments

http://www.pdffactory.com/

Multi-Pass Assemblers

If we use a two-pass assembler, the following symbol definition cannot
be allowed.

ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1
This is because ALPHA and BETA cannot be defined in pass 1. Actually,
if we allow multi-pass processing, DELTA is defined in pass 1, BETA is
defined in pass 2, and ALPHA is defined in pass 3, and the above
definitions can be allowed.

This is the motivation for using a multi-pass assembler.

31

Multi-Pass Assemblers
• It is unnecessary for a multi-pass assembler to make more than two passes

over the entire program.
• Instead, only the parts of the program involving forward references need to

be processed in multiple passes.
• The method presented here can be used to process any kind of forward

references.
• Use a symbol table to store symbols that are not totally defined yet.
• For a undefined symbol, in its entry, – We store the names and the number

of undefined symbols which contribute to the calculation of its value. – We
also keep a list of symbols whose values depend on the defined value of
this symbol.
• When a symbol becomes defined, we use its value to reevaluate the values

of all of the symbols that are kept in this list.
• The above step is performed recursively.

32

Multi-Pass Assemblers

• Examples
Microsoft MASM Assembler, Sun Sparc Assembler, IBM AIX Assembler
• Microsoft MASM Assembler
• SEGMENT - a collection segments, each segment is defined as

belonging to a particular class, CODE, DATA, CONST, STACK
• registers: CS (code), SS (stack), DS (data), ES, FS, GS
• similar to program blocks in SIC l ASSUME
e. g. MOVE ES: DATASEG 2 AX, DATASEG 2 ES, AX » similar to BASE in SIC

11

33

Multi-Pass Assemblers

• lMicrosoft MASM Assembler (Contd.)
• JUMP with forward reference
• near jump: 2 or 3 bytes
• far jump: 5 bytes
• e. g. JMP TARGET
• Warning: JMP FAR PTR TARGET
• Warning: JMP SHORT TARGET
• Pass 1: reserves 3 bytes for jump instruction phase error PUBLIC, EXTRN
• similar to EXTDEF, EXTREF in SIC 12

34

Advanced Assembly process

35

Advanced Assembly Process (Example)

36

Advanced Assembly Process
• Assembling
• At assembly time, the assembler:

• Evaluates conditional-assembly directives, assembling if the conditions are true.
• Expands macros and macro functions.
• Evaluates constant expressions such as MYFLAG AND 80H, substituting the

calculated value for the expression.
• Encodes instructions and non address operands. For example, mov cx, 13; can be

encoded at assembly time because the instruction does not access memory.
• Saves memory offsets as offsets from their segments.
• Places segments and segment attributes in the object file.
• Saves placeholders for offsets and segments (relocatable addresses).
• Outputs a listing if requested.

• Passes messages (such as INCLUDELIB) directly to the linker.
37

Advanced Assembly Process
• Once your source code is assembled, the

resulting object file is passed to the linker. At
this point, the linker may combine several
object files into an executable program. The
linker:

o Combines segments according to the
instructions in the object files,
rearranging the positions of segments that
share the same class or group.

o Fills in placeholders for offsets
(relocatable addresses).

o Writes relocations for segments into the
header of .EXE files (but not .COM files).

o Writes the result as an executable
program file.

•

38

Linking

Advanced Assembly Process

• Loading
After loading the executable file into memory, the operating system:
• Creates the program segment prefix (PSP) header in memory.
• Allocates memory for the program, based on the values in the PSP.
• Loads the program.
• Calculates the correct values for absolute addresses from the relocation table.
• Loads the segment registers SS, CS, DS, and ES with values that point to the

proper areas of memory.

39

Advanced Assembly Process

Useful Tools and Utilities
• DUMPBIN disassembly program
• Debuggers: OllyDbg and WinDbg
• Consol I/O: iolib.

40

• [PDF] Systems Programming and Operating Systems by Dhamdhere -
Free Download PDF (dlscrib.com)

• [PDF] Principles of Compiler Design By Alfred V. Aho & J.D.Ullman
Free Download – Learnengineering.in

References
Department of computer Science

41

https://dlscrib.com/download/systems-programming-and-operating-systems-by-dhamdhere_59b64cb7dc0d60182f8ceb1f_pdf
https://learnengineering.in/pdf-principles-of-compiler-design-by-alfred-v-aho-j-d-ullman-free-download/

THANK YOU

42

